- PII
- 10.31857/S2500208224020078-1
- DOI
- 10.31857/S2500208224020078
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 30-35
- Abstract
- The results of a study of the operation of photosystem II in the leaves of nine soybean varieties bred by the All-Russian Research Institute of Soybean are presented in order to identify genotypes with increased photosynthetic activity for inclusion in the breeding process when creating highly productive varieties of a new generation. A comparative assessment of varieties is given in terms of effective quantum yield of photosynthesis (Y) and chlorophyll fluorescence (F0), relative electron transport rate (ETR) and photochemical energy conversion depending on light saturation. The soybean varieties Gracia, Sonata and Kitrossa had the highest indicators for the studied parameters, significantly exceeding the standard variety Lydia. The effective quantum yield of photosynthesis, which shows the degree of absorption of solar energy, in the Gracia and Sonata varieties during the entire growing season was at the level of 0.80–0.83 rel. units, with this indicator exceeding for the Lydia variety by 0.09–0.13 rel. units depending on the phase of plant growth and development. The quantum yield of fluorescence (F0) in the leaves of the Lydia variety during the flowering phase exceeded the Gracia, Sonata and Kitrossa varieties by 60, 56 and 63%, respectively, which indicates a reduced activity of photosystem II in this variety. The efficiency of photochemical conversion of photosynthetic energy during the flowering phase was most stable in the leaves of the Sonata variety at light levels from 600 to 1500 µmol quanta/(m2∙s). Using the soybean variety Gratsia as the maternal form (♀) when crossed with the hybrid Am.2146, which was obtained with the inclusion of the Sonata variety in the hybridization, which also has a high degree of absorption of light quanta, the Radiant variety was create. Variety passed testing in 2021–2022, and in 2023 included in the State Register of Breeding Achievements for cultivation in the Far Eastern (12) region.
- Keywords
- соя сорт фотосинтез показатели флуориметрии селекционный процесс
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Головина Е.В. Эколого-генетическая изменчивость содержания пигментов в листьях сортов сои северного экотипа // Зернобобовые и крупяные культуры. 2019. № 3 (31). С. 74–79.
- 2. Зеленцов С.В., Мошненко Е.В., Бубнова Л.А. и др. Среднеранний теневыносливый сорт сои Вилана бета // Масличные Культуры. 2020. Вып. 1 (181). С. 140–146.
- 3. Иванов Л.А., Ронжина Д.А., Юдина П.К. и др. Сезонная динамика содержания хлорофиллов и каротиноидов в листьях степных и лесных растений на уровне вида и сообщества // Физиология растений. 2020. Т. 67. № 3. С. 278–288.
- 4. Кабашникова Л.Ф. Хлорофилл – зеленое вещество жизни // Наука и инновации. 2018. № 1 (179). С. 65–69.
- 5. Кошкин Е.И. Физиология устойчивости сельскохозяйственных культур. М., 2010. 638 с.
- 6. Малыш К.К., Рязанцева Т.П. Некоторые вопросы биологии сои, связанные с методикой гибридизации // Труды Амурской сельскохозяйственной опытной станции. Хабаровск. 1968. Т. 2. Вып. 1. С. 38–48.
- 7. Ничипорович А.А. Световое и углеродное питание растений (фотосинтез). М., 1955. 286 с.
- 8. Русаков В.В., Посыпанов Г.С., Синеговская В.Т. Источники азота для формирования семян сои при различных условиях выращивания // Приемы регулирования продуктивности сои. Новосибирск, 1987. С. 108–126.
- 9. Тимирязев К.А. Избранные сочинения. М.: Сельхозгиз, 1948. Т. 2. 424 с.
- 10. Фокина Е.М., Титов С.А., Губенко О.А. Наследование хозяйственно ценных признаков и гетерозис у гибридов сои F1 // Дальневосточный аграрный вестник: научно-практический журнал. 2020. Вып. 3 (55). С. 76–81.
- 11. Bjorkman O., Deming B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins // Planta. 1987. 170 (4). Р. 489–504.
- 12. Fehr W.R., Caviness C.E., Burmood D.T., Pennington J.S. Stages of development descriptions for soybeans, Glycine max. (L) Merr. // Crop Sci. 1971. № 11. Р. 929–930.
- 13. Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis: The basics // Annu Rev. Plant. Physiol. Plant. Mol. Biol. 1991. V. 42. P. 313–349.
- 14. Krause G.H., Jahns P. Non-photochemical energy-dissipation determined by chlorophyll fluorescence quenching: characterization and function // Papageorgiou G.C, Govindjee (eds.) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, The Nether-lands. 2004. V. 19. P. 463–495.
- 15. Mahlein A.K., Kuska M.T., Behmann J. New trends of digital technologies оpportunities for sugar beet cultivation // Int. sugar j. 2019. № 121 (1442). Р. 134–137.
- 16. Matsuda Ryo, Ohashi-Kaneko Keiko, Fujiwara Kazuhiro, Kurata Kenji. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance // Soil Sci. and Plant Nutr. 2007. № 53 (4). P. 459–465.
- 17. Rahimzadeh-Bajgiran P., Munehiro M., Omasa K. Relationships between the photochemical reflectance index (pri) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages // Photosynthesis Research. 2012. № 113. Р. 261–271. DOI: 10.1007/s11120-012-9747-4.
- 18. Shcherban A.B. HD-Zip Genes and Their Role in Plant Adaptation to Environmental Factors. Russian journal of genetics. 2019. № 55 (1). P. 1–9. DOI: 10.1134/S1022795419010125.
- 19. Zhang Y., Yang Q., Li T., Kaiser E. Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (solanum lycopersicum) // Environmental and Experimental Botany. 2018. № 149. Р. 109–119. DOI: 10.1016/j.envexpbot.2018.02.014.
- 20. Zheng J.F., He D.X., Ji F. Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting // International journal of agricultural and biological engineering. 2019. 12 (6). Р. 26–31. DOI: 10.25165/j.ijabe.20191206.5265.