- PII
- 10.31857/S2500208224050026-1
- DOI
- 10.31857/S2500208224050026
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 5
- Pages
- 7-11
- Abstract
- Under the conditions of a model pot experiment, the effect of electron irradiation on the phytopathogenic microflora of plant roots and leaves was studied. The studies were carried out on spring barley seeds of the Vladimir variety (reproduction 1), affected by helminthosporiosis (pathogen Bipolaris sorokiniana Shoem.), (natural infectious background). This pathogen causes root rot and leaf spot. The grain was irradiated using a wide-aperture electron accelerator “Duet” with a mesh plasma cathode and the output of the generated beam of a large cross-section into the atmosphere in doses of 1, 2, 3, 4 and 5 kGy. The total administered dose was increased by changing the number of pulses. The radiation dose rate was 100 Gy/pulse, the electron energy was 130 keV (mode 1) and 160 keV (mode 2). The depth of dose absorption did not exceed 300 μm. Based on the conducted studies on the effect of electron irradiation on root rot (pathogen Bipolaris sorokiniana) of spring barley, it was noted that in the tillering and heading phases, when irradiating seed material with a dose of 2 kGy in mode 1 (130 keV), the disease incidence and prevalence decreased by more than 1.5 times compared to the non-irradiated control. In the phase of full grain maturity, the highest value of root infestation (45–50%) and prevalence (95–100%) of Bipolaris sorokiniana were recorded, but statistically significant differences between the irradiated variants and the control were absent. The records of the damage of vegetative plants showed that in the tillering phase, for all irradiation variants in mode 1, the degree of damage to leaves 1–3 increased by 23% compared to the control, and in the heading phase, the degree of damage to the upper leaves (1–3) exceeded the control when irradiated at doses of 2–5 kGy (mode 1) and 1–5 kGy (mode 2) – 2.1–2.8 times for 1 leaf, 1.9–2.0 times for 2 leaves and 1.2 times for 3 leaves.
- Keywords
- электронное облучение степень поражения корневая гниль распространенность заболевания
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Бастрон А.В., Долгов И.В. Постановка проблемы обеззараживания зерна пшеницы ЭМП СВЧ в послеуборочный период и пути ее решения // Эпоха науки. 2016. № 5. С. 9.
- 2. Беспалько В.В., Буряк Ю.И. Влияние предпосевной обработки семян микроволновым полем в сочетании с регулятором роста и биопрепаратом на посевные качества и урожайные свойства ячменя ярового // Научно-производственный журнал «Зернобобовые и крупяные культуры». 2014. № 4 (12). С. 133–138.
- 3. Воробьев М.С., Денисов В.В., Коваль Н.Н. и др. Радиационная обработка натурального латекса с использованием широкоапертурного ускорителя электронов с плазменным эмиттером // Химия высоких энергий. 2015. Т. 49. № 3. С. 169–172.
- 4. Довнар В.С. К методике измерения площади листьев у злаковых культур // С.-х. биология. 1979. Т. 14. № 2. С. 235–237
- 5. Журбицкий З.И. Теория и практика вегетационного метода. М.: Наука, 1968. 206 с.
- 6. Козьмин Г.В., Гераськин С.А., Санжарова Н.И. Радиационные технологии в сельском хозяйстве и пищевой промышленности. Обнинск: ВНИИРАЭ, 2015. 400 с.
- 7. Котин А.И., Новикова Г.В., Зайцев П.В. и др. Исследование и разработка установки для предпосадочной обработки клубней картофеля воздействием электрофизических факторов // Вестник Казанского государственного аграрного университета. 2019. Т. 14. № 1 (52). С. 89–93.
- 8. Лавринова В.А., Чекмарев В.В., Гусев И.В. Общие принципы развития исследований по защите зерновых культур от болезней в Тамбовской области // Земледелие. 2018. № 1. С. 27–31.
- 9. Соболева О.М. Экологическая оценка действия электромагнитного поля на семена озимых злаков // Достижения науки и техники АПК. 2017. Т. 31. № 11. С. 47–49.
- 10. Соболева О.М., Кондратенко Е.П., Витязь С.Н. Влияние электромагнитного поля на аминокислотный состав и биологическую ценность зерна новой озимой культуры // Вестник АГАУ. 2015. № 11. С. 58–64.
- 11. Соболева О.М. Динамика численности микроорганизмов на поверхности зерновок ржи и ячменя после электромагнитной обработки // Достижения науки и техники АПК. 2018. Т. 32. № 9. С. 21–23.
- 12. Соковнин С.Ю. Наносекундные ускорители электронов и радиационные технологии на их основе. Екатеринбург: УрО РАН, 2007. 224 с.
- 13. Стратегия научно-технологического развития Российской Федерации (утв. Указом Президента Российской Федерации от 1 декабря 2016 г. № 642).
- 14. Толмачева Т.А. Афлатоксины, их влияние на продовольственное сырье и методы обеззараживания // Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2013. Т. 1. № 2. С. 40–44.
- 15. Физика. Технологии. Инновации / Под ред. Рычкова В.Н., Екатеринбург: УРФУ, 2015. 358 с.
- 16. Bianchini A., Bullerman L.B. Biological control of molds and mycotoxins in foods. In mycotoxin prevention and control in agriculture // ACS symposium series, American Chemical Society, Washington: DC, 2010. Р. 1–16.
- 17. Hocking A.D. Microbiological facts and fictions in grain storage // Proceedings of the Australian postharvest technical conference. Canberra: CSIRO, 2003. P. 55–58.
- 18. Karlovsky P., Suman M., Berthiller F. Impact of food processing and detoxification treatments on mycotoxin contamination // Mycotoxin research. 2016. Vol. 32. №. 4. Р. 179–205.
- 19. Loy N.N., Sanzharova N.I., Gulina S.N. et al. Influence of electronic irradiation on the affection of barley by root rot // J. Phys.: Conf. Ser., 2019. V. 1393. 012107.
- 20. Oghbaei M., Prakash J. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review // Cogent Food & Agriculture. 2016. Vol. 2. № 1. Р. 1–14. https://doi.org/10.1080/23311932.2015.1136015
- 21. Vorobyov M.S., Koval N.N., Sulakshin S.A. An electron source with a multiaperture plasma emitter and beam extraction into the atmosphere, Instrum. Exp. Tech., 2015. Vol. 58. No. 5. P. 687–695.