RAS Agricultural ScienceВестник российской сельскохозяйственной науки Vestnik of the Russian Agricultural Science

  • ISSN (Print) 2500-2082
  • ISSN (Online) 3034-5200

Comparison of methods of DNA extraction from Hermetia illucens larvae

PII
10.31857/S2500208224060171-1
DOI
10.31857/S2500208224060171
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
78-82
Abstract
The black soldier fly (Hermetia illucens) is a promising and promising source of animal feed due to its high protein and fat content. For this reason, in 2023, by decision of the Government of the Russian Federation, it was included in the list of agricultural products. Currently, the active use of molecular genetic analysis methods for agricultural purposes continues, including for the study of feed and feed additives. However, today there is too little data in the domestic literature on their use against the black soldier fly. Thus, there is almost no information about DNA extraction methods – the very first stage of any genetic analysis. Thus, the purpose of this study is to compare the effectiveness of existing DNA extraction methods and adapt them to work with Hermetia illucens larvae. In this study, several DNA extraction methods were tested, based on different lysing (SDS, guanidine thiocyanate, CTAB) and chelating (EDTA) agents, as well as lysis durations (1, 2, 3 hours), in comparison with a commercial kit. As a result, it was found that the highest DNA concentration (750 ng/μl) is achieved using the CTAB method, however, when using this protocol, additional purification is necessary. The combined action of SDS and high concentrations of EDTA results in a lower DNA yield (50ng/µl), but does not require additional purification. For the first time, a method based on guanidine thiocyanate was used, which turned out to be quite relevant for this object of study. All of the above methods resulted in comparable or higher DNA yield compared to the commercial GMO-SORB-B kit. Increasing the lysis time to 3 hours when using methods based on guanidine thiocyanate and CTAB leads to increased DNA concentration.
Keywords
черная львинка Hermetia illucens корма выделение ДНК CTAB SDS тиоцианат гуанидина EDTA
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Calderón-Cortés N., Quesada M., Cano-Camacho H., Zavala-Páramo G. A Simple and Rapid Method for DNA Isolation from Xylophagous Insects // International Journal of Molecular Sciences. 2010. Vol. 11(12). P. 5056–5064. https://doi.org/10.3390/ijms11125056
  2. 2. Chen M., Zhu Y., Tao J., Luo Y. Methodological comparison of DNA extraction from Holcocerrus hippophaecolus (Lepidoptera: Cossidae) for AFLP analysis // Forestry Studies in China. 2008. Vol. 10(3). P. 189–192. https://doi.org/10.1007/s11632-008-0035-5
  3. 3. Dave N., Joshi T. A Concise Review on Surfactants and Its Significance // International Journal of Applied Chemistry. 2017. Vol. 13(3). P. 663–672. https://doi.org/10.37622/IJAC/13.3.2017.663-672
  4. 4. Esser K.-H., Marx W.H., Lisowsky T. MaxXbond: first regeneration system for DNA binding silica matrices // Nature Methods. 2006. Vol. 3(1). https://doi.org/ 10.1038/nmeth845
  5. 5. Gautam A. Phenol-Chloroform DNA Isolation Method. Springer International Publishing. 2022. P. 33–39. https://doi.org/10.1007/978-3-030-94230-4_3
  6. 6. Green T.R., Popa R. Enhanced Ammonia Content in Compost Leachate Processed by Black Soldier Fly Larvae // Applied Biochemistry and Biotechnology. 2012. Vol. 166(6). P. 1381–1387. https://doi.org/10.1007/s12010-011-9530-6
  7. 7. Sadykova E.O., Tyshko N.V., Nikitin N.S. et al. Monitoring methods for novel insect-derived food: the PCR protocol for the detection and identification of Hermetia Illucens insects based on the HEI-COI probe and primer system // Problems of Nutrition. 2023. Vol. 92(1). P. 36–44. https://doi.org/ 10.33029/0042-8833-2023-92-1-36-44
  8. 8. Shehadul Islam M., Aryasomayajula A., Selvaganapathy P. A Review on Macroscale and Microscale Cell Lysis Methods // Micromachines (Basel). 2017. Vol. 8(3) P. 83. https://doi.org/10.3390/mi8030083
  9. 9. Suganthi M., Abirami G., Jayanthi M. et al. A method for DNA extraction and molecular identification of Aphids // MethodsX. 2023. Vol. 10. P. 102100. https://doi.org/10.1016/j.mex.2023.102100
  10. 10. Tan S.C., Yiap B.C. DNA, RNA, and Protein Extraction: The Past and The Present // Journal of Biomedicine and Biotechnology. 2009. Vol. 2009. P. 1–10. https://doi.org/10.1155/2009/574398
  11. 11. Zheng L., Hou Y., Li W. et al. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes // Energy. 2012. Vol. 47(1). P. 225–229. https://doi.org/10.1016/j.energy.2012.09.006
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library