RAS Agricultural ScienceВестник российской сельскохозяйственной науки Vestnik of the Russian Agricultural Science

  • ISSN (Print) 2500-2082
  • ISSN (Online) 3034-5200

Influense of pre seeding electronic irradiation to the spring wheat sedlings and deseases insedence indicators

PII
S2500208225020058-1
DOI
10.31857/S2500208225020058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
21-25
Abstract
. In the laboratory conditions of the climate chamber, a model experiment was conducted to study the effect of pre-sowing low-energy electron irradiation of seeds on the development indicators of spring wheat seedlings of the Iren variety. In the experiment, seeds naturally affected by root rot (pathogens Drechslera teres and Fusarium spp) were used. Irradiation in the range of 1–5 kGy was carried out on the electronic accelerator “Duet” at the ISE SB RAS, the radiation power is 100 100 Gy/pulse, at two electron energies – 100 keV (mode 1) and 120 keV (mode 2). The seeds were germinated in rolls of filter paper 9 and 12 days after irradiation. Unirradiated seeds served as a control. The repetition in the experiments is threefold. During the irradiation period of 9 days, there was a significant 1% increase in laboratory germination at doses of 2 and 4 kGy (electron energy 100 keV, mode 1) and at doses 1 and 4 kGy (electron energy 120 keV, mode 2), root lengths at doses 1 and 5 kGy (mode 1) by 4.3 and 3.4% and at doses of 1–3 kGy (mode 2) by 4–5% and there is no significant effect on the content of free proline and catalase activity in 7 daily wheat seedlings. During the irradiation period of 12 days, irradiation stimulated the length of the sprout at a dose of 2 kGy (mode 1) by 11.2%, and at doses of 5 kGy (mode 1) and 2–5 kGy (mode 2) it depressed by 12.2 and 20.4–32%, respectively. At doses of 3 and 5 kGy (mode 2), the length of the roots of seedlings decreased by 7.6 and 6.1%. Irradiation caused an increase in the crude mass of seedlings at doses of 1-5 kGy (mode 1) by 6.7–11.7% and at doses of 1 and 2 kGy (mode 2) by 8.7–17.8%, and at doses of 3–5 kGy (mode 2), on the contrary, a decrease of 21.6–32.3%. Taking into account the infestation of 7 daily wheat seedlings with diseases when laying at different times after irradiation of seeds showed that during the irradiation period of 12 days, the development of diseases was lower than during the period of 9 days.
Keywords
электронное облучение яровая пшеница развитие проростков содержание пролина активность каталазы пораженность болезнями
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Биссвангер Х. Практическая энзимология. М.: БИНОМ. Лаборатория знаний, 2013. 328 с.
  2. 2. Войтова Л.Р. Анализ семян ячменя на зараженность корневой гнилью // Защита растений. М.: Колос, 1980. № 2. С. 48–49.
  3. 3. ГОСТ 12038-84 Государственные стандарты Союза ССР. Семена сельскохозяйственных культур. Методы определения качества. Ч. 2. М., 1995. С. 44–101.
  4. 4. ГОСТ 12044-93 Межгосударственный стандарт. Семена сельскохозяйственных культур. Методы определения зараженности болезнями. М., 2011. 57 с.
  5. 5. Санин С.С. Защита пшеницы от болезней в современных интенсивных технологиях ее возделывания в Центральном регионе России // Зернобобовые и крупяные культуры. 2013. № 2 (6). С. 33–40.
  6. 6. Чернобровкин Т.В., Вазиров Р.А., Соковнин С.Ю. Влияние облучения низкоэнергетическим электронным пучком на прорастание и рост вида Triticum L. // Современные проблемы радиобиологии, радиоэкологии и агроэкологии. Сборник докладов IV Международной научно-практической конференции. Обнинск, 2021. С. 103–107.
  7. 7. Aebi H. Catalases Physiological and Biochemical Effects of 24-Epibrassinolide on Heat-Stress Adaptation in Maize (Zea mays L.) // Methods of Enzymatic Analysis. 1971. Vol. 3. P. 273–286.
  8. 8. Bates L.S. Rapid determination of free proline for water stress studies // Plant Soil. 1973. Vol. 39. P. 205–207.
  9. 9. Isemberlinova A.A., Poloskov A.V., Egorov I.S. et al. Influence of a pulsed electron beam on the sowing quality of wheat // Key Eng. Mater. 2018. Vol. 769. P. 172–180. https://doi.org/10.4028/www.scientific.net/KEM.769.172.
  10. 10. Vorobyov M.S., Koval N.N., Sulakshin S.A. An electron source with a multiaperture plasma emitter and beam extraction into the atmosphere // Instrum. Exp. Tech. 2015. Vol. 58, № 5. P. 687–695.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library