RAS Agricultural ScienceВестник российской сельскохозяйственной науки Vestnik of the Russian Agricultural Science

  • ISSN (Print) 2500-2082
  • ISSN (Online) 3034-5197

SEARCH FOR CHEMICALS WITH ACARICIDAL ACTIVITY AGAINST ACCARIDS - PARASITES OF HONEY BEES L

PII
S3034519725030179-1
DOI
10.7868/S3034519725030179
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
84-87
Abstract
The aim of the study is to review new methods of mite control based on the biological nature of honey bee and mite. Literature sources were analyzed to compare the life cycles of these objects. Data on changes in mite behavior under the influence of the compounds selected by screening are presented. Researchers screened 13 chemicals among which are dialkoxybenzene, esters of 5-(2’-hydroxyethyl) cyclopent-2-en-1-ol(cy-esters), and N,N-diethyl-meta-toluamide (DEET), a known insect repellent. These dialkoxybenzene and cy-ether compounds, when acting on mites, shift their preference from foraging bees to foraging bees. DEET does not affect the behavior of honey bees and their preference, but reduces the ability of mites to reach bees. Of the substances in this series, 5-(2’-methoxyethyl) cyclopent-2-ene-1-butoxydieether showed the greatest activity, exerting a dose-dependent (0.01 µg and 0.1 µg) suppression of the mite’s foreleg response to volatile substances in bee honey. Long-term effects were achieved at a low (0.01 µg) dose. Exposure to the compound causes an inversion of mite preference with impaired chemical recognition by bees. In experiments to study acaricidal activity, a dose of 1 µg of 1-allyloxy-4-propoxybenzene resulted in the death of 70% of the mites after 4 hours of exposure, and after 6 hours 90% of the mites were killed. To confirm these results of laboratory experiments it is necessary to conduct experiments in apiary conditions.
Keywords
медоносные пчелы варроатоз Array диалкоксибензолы ци-эфиры DEET ингибирование обоняния клеща
Date of publication
02.06.2025
Year of publication
2025
Number of purchasers
0
Views
73

References

  1. 1. Akhtar Y., Yu Y., Isman M.B., Plettner E. Dialkoxybenzene and dialkoxyallylbenzene feeding and oviposition deterrents against the cabbage looper, Trichoplusia ni: potential insect behavior control agents //Journal of agricultural and food chemistry. 2010. V. 58. № 8. Р. 4983-4991. https://doi.org/10.1021/jf9045123
  2. 2. Allan S.A. Chemical ecology of tick-host interactions //Olfaction in vector-host interactions. Wageningen Academic. 2010. Р. 327-348. https://doi.org/10.3920/9789086866984_017
  3. 3. Bąk B., Wilde J., Siuda M. Characteristics of north-eastern population of Varroa destructor resistant to synthetic pyrethroids. // Medycyna Weterynaryjna. 2012. V. 68. № 10. Р. 603-606.
  4. 4. Bernardi S., Venturino E. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite // Heliyon. 2016. V. 2. № 5. https://doi.org/10.1016/j.heliyon.2016.e00101
  5. 5. Corbel V., Stankiewicz M., Pennetier C. et al. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet // BMC biology. 2009. V. 7. № 1. P. 1-11. https://doi.org/10.1186/1741-7007-7-47
  6. 6. Dawdani S., O’Neill M., Castillo C. et al. Effects of dialkoxybenzenes against Varroa destructor and identification of 1-allyloxy-4-propoxybenzene as a promising acaricide candidate //Scientific Reports. 2023. V. 13. № 1. P. 11195. https://doi.org/10.1038/s41598-023-38187-6
  7. 7. Del Piccolo F., Nazzi F., Della Vedova G., Milani N. Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons //Parasitology. 2010. V. 137. № 6. P. 967-973. https://doi.org/10.1017/S0031182009991867
  8. 8. Dillier F.X., Fluri P., Imdorf A. Review of the orientation behaviour in the bee parasitic mite Varroa destructor: sensory equipment and cell invasion behaviour //Revue suisse de zoologie. 2006. V. 113. № 4. P. 857-878. https://doi.org/10.5963/bhl.part.80381
  9. 9. Ebrahimi P., Spooner J., Weinberg N., Plettner E. Partition, sorption and structure activity relation study of dialkoxybenzenes that modulate insect behavior //Chemosphere. 2013. V. 93. № 1. P. 54-60. https://doi.org/10.1016/j.chemosphere.2013.04.065
  10. 10. Eliash N., Singh N.K., Kamer Y. et al. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor? // PLoS One. 2014. V. 9. №. 9. P. e106889. https://doi.org/10.1371/journal.pone.0106889
  11. 11. Eliash N. Learning and disrupting the chemical communication of Varroa destructor Anderson and Trueman // Food and Environment of the Hebrew University, Jerusalem. 2012.
  12. 12. Francis R.M., Nielsen S.L., Kryger P. Varroa-virus interaction in collapsing honey bee colonies //PloS One. 2013. V. 8. № 3. P. e57540. https://doi.org/10.1371/journal.pone.0057540
  13. 13. Guzmán-Novoa E., Eccles L., Mcgowan J. et al. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada //Apidologie. 2010. V. 41. № 4. P. 443-450. https://doi.org/10.1051/apido/2009076
  14. 14. Kather R., Drijfhout F.P., Martin S.J. Task group differences in cuticular lipids in the honey bee Apis mellifera // Journal of chemical ecology. 2011. V. 37(2). P. 205-212. https://doi.org/10.1007/s10886-011-9909-4
  15. 15. Kuster R.D., Boncristiani H.F., Rueppell O. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae //Journal of Experimental Biology. 2014. V. 217. № 10. P. 1710-1718. https://doi.org/10.1242/jeb.097766
  16. 16. Le Conte Y., Meixner M.D., Brandt A. et al. Geographical distribution and selection of European honey bees resistant to Varroa destructor //Insects. 2020. V. 11. № 12. P. 873. https://doi.org/10.3390/insects11120873
  17. 17. Mondet F., de Miranda J.R., Kretzschmar A et al. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor //PLoS pathogens. 2014. V. 10. № 8. P. e1004323. https://doi.org/10.1371/journal.ppat.1004323
  18. 18. Plettner E., Eliash N., Singh N.K. et al. The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents // Apidologie. 2017. V. 48. P. 78-92. https://doi.org/10.1007/s13592-016-1452-8
  19. 19. Repellent D. Insect Odorant Receptors Are Molecular Targets of the Insect // Science. 2008. V. 1153121. № 1838. P. 319. https://doi.org/10.1126/science.1153121
  20. 20. Singh N.K., Eliash N., Raj S. et al. Effect of the insect feeding deterrent 1-allyloxy-4-propoxybenzene on olfactory responses and host choice of Varroa destructor // Apidologie. 2020. V. 51. P. 1133-1142. https://doi.org/10.1007/s13592-020-00791-0
  21. 21. Worek F., Eyer P., Thiermann H. Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning // Drug testing and analysis. 2012. V. 4. № 3-4. P. 282-291. https://doi.org/10.1002/dta.337
  22. 22. Ziegelmann B., Rosenkranz P. Mating disruption of the honeybee mite Varroa destructor under laboratory and field conditions //Chemoecology. 2014. V. 24. № 4. P. 137-144. https://doi.org/10.1007/s00049-014-0155-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library